Differential gene expression in Festuca under heat stress conditions.
نویسندگان
چکیده
Fescues (Festuca sp.) are major cool-season forage and turf grass species around the world. Heat stress is one of the limiting factors in the production of fescues as forage in the southern Great Plains of the US. Heat responsive gene transcripts were cloned by using suppression subtractive hybridization between a heat-tolerant and a heat-sensitive fescue genotype subjected to a slowly increased temperature mimicking the natural conditions. The temperature in the growth chamber containing the plants was gradually increased from 24 degrees C to 44 degrees C over a period of 2 weeks. Three subtractions were conducted between samples of the two genotypes collected after 12 h of exposure to 39, 42, and 44 degrees C. A total of 2495 ESTs were generated, of which 1800 clustered into 434 contigs and 656 were singlets. The putative functions of ESTs were predicted by BLASTX. Nearly 30% of the contigs and 39% of the singlets had no similarity to GenBank sequences. Differentially expressed genes selected by subtractions were classified into 10 broad categories according to their putative functions generated by BLAST analysis. Under heat-stress conditions, cell maintenance, chloroplast associated and photosynthesis-, protein synthesis-, signalling-, and transcription factor-related genes had higher expression levels in the heat-tolerant genotype. Genes related to metabolism and stress had higher expression in the heat-sensitive genotype. The expression of 17 selected gene transcripts were examined by RT-PCR using plant tissues of the two genotypes grown under heat stress and under optimal temperature conditions (24 degrees C) for fescue. Results from RT-PCR confirmed the differential expressions of these transcripts. The differential expressions of at least 11 of these genes were attributable to heat stress rather than to differences in the genetic backgrounds of the genotypes.
منابع مشابه
Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress
Heat stress transcription factors (HSFs) compose a large gene family, and different members play differential roles in regulating plant responses to abiotic stress. The objectives of this study were to identify and characterize an A2-type HSF, FaHsfA2c, in a cool-season perennial grass tall fescue (Festuca arundinacea Schreb.) for its association with heat tolerance and to determine the underly...
متن کاملDifferential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...
متن کاملEffect of Endophytic fungi in Festuca arundinaceae proteome pattern changes under drought stress
In this research, have been investigated the effects of endophytic fungi from Neotyphidum genius that has mandatory symbiosis with tall fescue (Festuca arundinacea schreb) and drought stress on changes in the protein profile of the tall fescue species. This process requires changes in the gene and protein expression profiles. Since these proteins have not been reported for tall fescue species. ...
متن کاملThe Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue
Tall fescue (Festuca arundinacea Schreb) is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd) on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition) or 44°C (heat stress) for 4 h. The r...
متن کاملHeat Shock Factor Genes of Tall Fescue and Perennial Ryegrass in Response to Temperature Stress by RNA-Seq Analysis
Heat shock factors (Hsfs) are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea, and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 56 413 شماره
صفحات -
تاریخ انتشار 2005